Pierre-Marie Pédrot
joint work with Nicolas Tabareau

Max Planck Institute for Software Systems

Séminaire PPS

Jé NE PENSE

poc _—
Z’S 2015 gl wya
T
er gg;lrﬁbﬁ"-‘"‘n' _goLu%‘faN
CEST Qu'iL
N'Y A PAS

/

DE PROBLEME

CENEST

*
DONE--n

e PLUS
GARATE
PLUS DN A
pE CHANCES
QUE GA MARCHE

It's time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

3/ 44

It's time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

3/ 44

It's time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.)
o Not just higher-order logic, not just first-order logic ‘
o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 3/ 44

My research has been focussed on the extension of CIC with side-effects.

Un Coq qui fait de [effet

My research has been focussed on the extension of CIC with side-effects.

To Program More!

o Obviously you want effects to program

o E.g. state, exceptions, non-termination, continuations...

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 4 /44

Un Coq qui fait de [effet

My research has been focussed on the extension of CIC with side-effects.

To Program More!

(]

Obviously you want effects to program

©

E.g. state, exceptions, non-termination, continuations...

To Prove More!

A well-known fact here at PPS

Curry-Howard I side-effects < new axioms

©

©

©

Archetypical example: callcc and classical logic (Griffin, Krivine)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 4 /44

Summary of the Previous Episodes

We already gave two instances of effectful variants of CIC.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 5/ 44

Summary of the Previous Episodes

We already gave two instances of effectful variants of CIC.

Forcing (LICS 2016)

o Bread and butter categorical model factory
o « Forcing: retour de I'étre aimé — permis de conduire — désenvoiitement. »

o Computationally: a glorified monotonous reader monad

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 5/ 44

Summary of the Previous Episodes

We already gave two instances of effectful variants of CIC.

Forcing (LICS 2016)

o Bread and butter categorical model factory
o « Forcing: retour de I'étre aimé — permis de conduire — désenvoiitement. »
o Computationally: a glorified monotonous reader monad

Weaning (LICS 2017)

©

A generic construction adding effects

Handles a rather wide class of monads

(]

©

Somehow dual to forcing

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 5/ 44

You Can't Have Your Cake and Eat It

Effects make reduction strategies relevant.

~ P-M.Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 6/ 44

You Can't Have Your Cake and Eat It

Effects make reduction strategies relevant.

Call-by-value Call-by-name

® Weaker conversion rule © Full conversion rule

© Full dependent elimination ® Weaker dependent elimination
©® Good old ML semantics ® Strange PL realm

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 6 /44

Last Propaganda Slide: A Flurry of Buzzwords

Recall that dependent elimination for booleans amounts to

'-M:B ' Ny : P{true} ' Ny : P{false}
'k if M then N; else Ny : P{M}

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

7/ 44

Last Propaganda Slide: A Flurry of Buzzwords

Recall that dependent elimination for booleans amounts to

'-M:B ' Ny : P{true} ' Ny : P{false}
'k if M then N; else Ny : P{M}

We proposed a generic restriction for effectful CBN dependent elimination.

P must be linear (=~ CBV / algebra hom.)

o Generalizes Krivine's storage operators
o If you weren't at my Geocal-LAC talk, tant pis pour vous
o Towards a Linear Dependent {Big Data, Machine Learning, loT}

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 7/ 44

Shameless Propaganda

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 8 /44

Part |

An extension of CIC rooted in Shadok wisdom.

“THE MORE IT FAILS, THE MORE LIKELY IT WILL EVENTUALLY SUCCEED.”

CENEST
QUEN ESSAY-

ANT £ ONTINUT
ELLEMENT,
@uE L'ON FINIT]
PAR REUSS IR

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 9 /44

Part |

An extension of CIC rooted in Shadok wisdom.

“THE MORE IT FAILS, THE MORE LIKELY IT WILL EVENTUALLY SUCCEED.”

© Add a failure mechanism to CIC
© Fully computational exceptions

© Features full conversion

© Features full dependent elimination

PAR REUSS IR
*
DONC e

s PLUS
GARATE
pLUS ON A
pE CHANCES
QUE 4A MARCHE

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 9 /44

Part |

An extension of CIC rooted in Shadok wisdom.

“THE MORE IT FAILS, THE MORE LIKELY IT WILL EVENTUALLY SUCCEED.”

© Add a failure mechanism to CIC
© Fully computational exceptions

© Features full conversion

© Features full dependent elimination

® Didn't | just say this was not possible???

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 9 /44

Part |

An extension of CIC rooted in Shadok wisdom.

“THE MORE IT FAILS, THE MORE LIKELY IT WILL EVENTUALLY SUCCEED.”

siL Y

PA; A
SOLUTION
CEST @u'ie
N'Y A PAS

e © Add a failure mechanism to CIC
© Fully computational exceptions

© Features full conversion

ANT £ ONTINUT
ELLEMENT,
@uE L'ON FINIT]
PAR REUSS IR

© Features full dependent elimination

® Didn't | just say this was not possible???

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 9 /44

The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with

E : O
raise : I[IA:OE— A

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

10 / 44

The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with
E O
raise : IIA:0O.E— A

As hinted before, we need to be call-by-name to feature full conversion
raise (Ilz: A. B) e =
match (raise Z e) ret Pwith j =

where P: 7 — [.

Az: A.raise B e
raise (P (raise Z ¢€)) e

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 10 / 44

The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with
E O
raise : IIA:0O.E— A

As hinted before, we need to be call-by-name to feature full conversion.
raise (Ilz: A. B) e =
match (raise Z e) ret Pwith j =

where P: 7 — [.

Az: A.raise B e
raise (P (raise Z ¢€)) e

Remark that in call-by-name, if M: A — B, in general

M (raise Ae) # raiseBe

for otherwise we would not have (Az: A. M) N= M{z:= N}.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 10 / 44

Catch Me If You Can

Remember that on functions:

raise (Ilz: A.B) e = MAz:A.raise Be

It means catching exceptions is limited to positive datatypes!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 11 / 44

Catch Me If You Can

Remember that on functions:

raise (Ilz: A.B) e = MAz:A.raise Be

It means catching exceptions is limited to positive datatypes!

For inductive types, this is a generalized induction principle.

catchg: IIP:B — [Breee : IIP:B — [,
P true — P true —
P false — P false —
(Ile: E. P (raise B ¢)) —
IIb:B.Pb IIp:B.Pb
where

catchg P p; py p. true =

catchg P p; pr p. false = py

catchg P p; py pe (raise Be) = pee

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

11/ 44

Mot d’'Ordre: A Model

It's not just randomly coming up with syntax though.

o We want a justification for what we are doing

o What about normalization? Subject reduction? Other nice properties?

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 12 / 44

Mot d’'Ordre: A Model

It's not just randomly coming up with syntax though.

o We want a justification for what we are doing
o What about normalization? Subject reduction? Other nice properties?

o ... that's called a model.

We want a model of the exceptional type theory!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 12 / 44

Semantics of CIC has a fame of being horribly complex.

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

| won't lie: it is. But part of this fame is nonetheless due to its models.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 13 / 44

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

| won't lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!

@ Con: Sets!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option

22/02/2018 13 / 44

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

| won't lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!
@ Con: Sets!

Realizability models: construct programs that respect properties.

() Computational, computer-science friendly.

o Con: Not foundational (requires an alien meta-theory), not decidable.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 13 / 44

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

| won't lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!

@ Con: Sets!

Realizability models: construct programs that respect properties.

Qo Computational, computer-science friendly.

o Con: Not foundational (requires an alien meta-theory), not decidable.
Categorical models: abstract description of type theory.

Q Abstract, subsumes the two former ones.
O Con: Realizability 4 very low level, gazillion variants, intrisically typed, static.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 13 / 44

Instead, let's look at what Curry-Howard provides in simpler settings.

Curry-Howard Orthodoxy

Instead, let's look at what Curry-Howard provides in simpler settings.
Logical Interpretations < Program Translations

On the programming side, implement effects using e.g. the monadic style.

o A type transformer T, two combinators, a few equations

o Interpret mechanically effectful programs (e.g. in Haskell)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 14 / 44

Curry-Howard Orthodoxy

Instead, let's look at what Curry-Howard provides in simpler settings.
Logical Interpretations < Program Translations

On the programming side, implement effects using e.g. the monadic style.

o A type transformer T, two combinators, a few equations

o Interpret mechanically effectful programs (e.g. in Haskell)

On the logic side, extend expressivity through proof translation.
o Double-negation = classical logic (callcc)
o Friedman's trick = Markov's rule (exceptions)

o Forcing = —~CH (global monotonous cell)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 14 / 44

Step 0: Fix a theory 7 := CIC.

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

Step 0: Fix a theory T := CIC.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Ferc [M] : [A]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 15 / 44

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

Step 0: Fix a theory T := CIC.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Ferc [M] : [A]

Step 2: Flip views and actually pose

FrM:A 2 ke [M]:[4]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

15 / 44

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

Step 0: Fix a theory T := CIC.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Ferc [M] : [A]

Step 2: Flip views and actually pose
A
FrM: A = Foic [M] = [4]

Step 3: Expand T by going down to the CIC assembly language,
implementing new terms given by the [-] translation.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

15 / 44

« CIC, the LLVM of Type Theory »

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 16 / 44

The Exceptional Implementation

Let's implement the exceptional type theory into CIC!

o Source is a CBN theory, so usual monadic encoding won't work.
o We use a variant of our previous weaning translation.

o All typing and computations rules mentioned before hold for free.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 17 / 44

The Exceptional Implementation

Let's implement the exceptional type theory into CIC!

o Source is a CBN theory, so usual monadic encoding won't work.
o We use a variant of our previous weaning translation.

o All typing and computations rules mentioned before hold for free.

Let's call the exceptional type theory T to disambiguate it from CIC.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 17 / 44

The Exceptional Implementation

Let's implement the exceptional type theory into CIC!

o Source is a CBN theory, so usual monadic encoding won't work.
o We use a variant of our previous weaning translation.

o All typing and computations rules mentioned before hold for free.

Let's call the exceptional type theory T to disambiguate it from CIC.

Only parameter of the translation: a fixed type of exceptions in the target.

}_CICE O

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 17 / 44

Intuition: Fr A:O ~ Feio [4] : XA O.E — A.

The Exceptional Implementation, Negative case

Intuition: Fr A0 ~ Feie [4] : XA :0O.E — A.
Every exceptional type comes with its own implementation of failure!

[A] : O :=m [4] and [Alg : E — [A] := m2 [4]

[z : A. B] = Ilz: [A].[B]
lz: A.B]lg e = Az:[A].[Bly e
[x] =

[M N = [M][N]

[Az: A. M| = Az:[A]. [M]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 18 / 44

The Exceptional Implementation, Negative case

Intuition: Fr A0 ~ Feie [4] : XA :0O.E — A.
Every exceptional type comes with its own implementation of failure!

[A] : O :=m [4] and [Alg : E — [A] := m2 [4]

[z : A. B] = Ilz: [A].[B]
lz: A.B]lg e = Az:[A].[Bly e
[x] =

[M N = [M][N]

[Az: A. M| = Az:[A]. [M]

If I' Fore M : A then [[F]] Fcric [M] 3 [[A]]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 18 / 44

The Exceptional Implementation, Failure

It is straightforward to implement the failure operation.

E e O
raise : I[NA:OE— A

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

19 / 44

The Exceptional Implementation, Failure

It is straightforward to implement the failure operation.

E e O
raise : I[NA:OE— A

E] SA:OE = A

E] — (E \e:E.¢)

[raise] : IIAg:(¥A:0.E— A).E— m A
[raise| := my

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 19 / 44

The Exceptional Implementation, Failure

It is straightforward to implement the failure operation.

E e O

raise : I[NA:OE— A

[E] :
[E] =

[raise]
[raise] :=

YA:OE— A
(E,\e:E.¢)

HA() : (ZA : DE—)A)E—)TH AO

2

Computational rules trivially hold!

[raise (Ilz: A. B) €] = |[Mz: A.raise B €]

w2 (Hz: [A]. [B]), (A(e:

P-M. Pédrot (MPI-SWS)

i I
E) (z: [AD)- 72 [B] ¢)) [€]

Az : [A]. 72 [B] [e]

Failure is Not an Option 22/02/2018

19 / 44

The Exceptional Implementation, Positive case

The really interesting case is the inductive part of CIC.

How to implement [B|s : E — [B]?

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 20 / 44

The Exceptional Implementation, Positive case

The really interesting case is the inductive part of CIC.
How to implement [B|s : E — [B]?
Could pose [B] := B and take an arbitrary boolean for [B]s...

... but that would not play well with computation, e.g. catch.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 20 / 44

The Exceptional Implementation, Positive case

The really interesting case is the inductive part of CIC.

How to implement [B|s : E — [B]?

Could pose [B] := B and take an arbitrary boolean for [B]s...
... but that would not play well with computation, e.g. catch.

Worse, what about [L]g : E — [L]?

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 20 / 44

The Exceptional Implementation, Positive case

Very elegant solution: add a default case to every inductive type!

Inductive [B] := [true]: [B] |[false]:[B] |Bg:E — [B]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 21 / 44

The Exceptional Implementation, Positive case

Very elegant solution: add a default case to every inductive type!

Inductive [B] := [true]: [B] |[false]:[B] |Bg:E — [B]

Pattern-matching is translated pointwise, except for the new case.
[IIP:B — 0. P true — P false — IIb: B. P }]
= IIP:[B] — [O]. P [true] — P [false] — IIb: [B]. P b

o If bis [true], use first hypothesis
o If bis [false], use second hypothesis

o If bis an error By e, reraise e using [P b]y e

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

21/ 44

The exceptional translation interprets all of CIC. I

Shadok Logic Strikes Back

Theorem
The exceptional translation interprets all of CIC. J

© A type theory with effects!

© Compiled away to CIC!

© Features full conversion

© Features full dependent elimination

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 22 / 44

Shadok Logic Strikes Back

The exceptional translation interprets all of CIC.

Theorem J

© A type theory with effects!

© Compiled away to CIC!

© Features full conversion

© Features full dependent elimination

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 22 / 44

Shadok Logic Strikes Back

Theorem

The exceptional translation interprets all of CIC. J

© A type theory with effects!

© Compiled away to CIC!

© Features full conversion

© Features full dependent elimination

® Ah, yeah, and also, the theory is inconsistent.

It suffices to raise an exception to inhabit any type.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 22 / 44

An Impure Dependently-typed Programming Language

Do you whine about the fact that OCaml is logically inconsistent?

An Impure Dependently-typed Programming Language

Do you whine about the fact that OCaml is logically inconsistent?

Ifbq M: L, then M = raise L e for some e: E.

Consistency: A Social Construct

An Impure Dependently-typed Programming Language

Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)
Ifg, M: L, then M = raise L e for some e : E.

A Safe Target Framework

You can still use the CIC target to prove properties about Tg programs!

~ P-M.Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 23 / 44

Consistency: A Social Construct

An Impure Dependently-typed Programming Language

Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)
Ifg, M: L, then M = raise L e for some e : E.

A Safe Target Framework

You can still use the CIC target to prove properties about Tg programs!

Cliffhanger

You can prove that a program does not raise uncaught exceptions.

~ P-M.Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 23 / 44

Consistency: A Social Construct

An Impure Dependently-typed Programming Language

Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)
Ifg, M: L, then M = raise L e for some e : E.

A Safe Target Framework

You can still use the CIC target to prove properties about 7g programs!

Cliffhanger

You can prove that a program does not raise uncaught exceptions.

And now for a little ad before the second part of the show!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 23 / 44

Informercial — Did You Know?

The exceptional translation is just a principled Friedman's A-translation!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 24 / 44

Informercial — Did You Know?

The exceptional translation is just a principled Friedman's A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[—A] 2 ([A] = E) - E

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 24 / 44

Informercial — Did You Know?

The exceptional translation is just a principled Friedman's A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[—A] 2 ([A] = E) - E

First-order purification

If Pisa XY type, then -cic [P] ++ P+ E.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 24 / 44

Informercial — Did You Know?
The exceptional translation is just a principled Friedman's A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[—A] 2 ([A] = E) - E

First-order purification

If Pisa X type, then Fcic [P] <+ P+ E.

Friedman's Trick in CIC
If Pand @ are E? types, Fcic p : P. == @ implies Fgic Hp : P. Q.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 24 / 44

Part Il

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 25 / 44

If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!

Cliffhanger (cont.)

You can prove that a program does not raise uncaught exceptions.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 26 / 44

If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!

Cliffhanger (cont.)

You can prove that a program does not raise uncaught exceptions.

Let's call valid a program in Tg that “does not raise exceptions”.

For instance,
o there is no valid proof of L
o the only valid booleans are true and false

o a function is valid if it produces a valid result out of a valid argument

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 26 / 44

If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!

Cliffhanger (cont.)

You can prove that a program does not raise uncaught exceptions.

Let's call valid a program in Tg that “does not raise exceptions”.

For instance,
o there is no valid proof of L
o the only valid booleans are true and false

o a function is valid if it produces a valid result out of a valid argument
Validity is a type-directed notion!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 26 / 44

The Curry-Howard-Shadok Correspondence

Let's locally write M I+ A if M is valid at A.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 27 / 44

Let’s locally write M- A if M is valid at A.

Let’s locally write M- A if M is valid at A.

What? That's just logical relations.

The Curry-Howard-Shadok Correspondence

Let's locally write M I+ A if M is valid at A.

fEA—>B = Vz:[A]. zlFA—fzlF B

What? That's just logical relations.

Come on. That's intuitionistic realizability.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

27 / 44

The Curry-Howard-Shadok Correspondence

Let's locally write M I+ A if M is valid at A.

fFrA—B = Vz:[A]. zIFA— fzIF B
What? That's just logical relations.

Come on. That's intuitionistic realizability.

'?E Fools ! That's parametricity.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

27 / 44

The Curry-Howard-Shadok Correspondence

Let's locally write M I+ A if M is valid at A.

fFrA—B = Vz:[A]. zIFA— fzIF B
What? That's just logical relations.

Come on. That's intuitionistic realizability.

Fools ! That's parametricity.

Zo!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 27 / 44

Making Everybody Agree
It's actually folklore that these techniques are essentially the same.

And there is already a parametricity translation for CIC! (Bernardy-Lasson)

We just have to adapt it to our exceptional translation.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 28 / 44

Making Everybody Agree

It's actually folklore that these techniques are essentially the same.

And there is already a parametricity translation for CIC! (Bernardy-Lasson)

We just have to adapt it to our exceptional translation.

Idea:

Feie [M] : [A]
From + M:A produce two sequents +
Fore [Mle : [A]e [M]

where [A]. : [A] — O is the validity predicate.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

28 / 44

Parametric Exceptional Translation (Sketch)

Most notably,

[Mz: A.B]. f = (z:[A]) (2 : [A]: z).[B]e (f)
[B]. b ~)= [true] + b= [false]
[L]e s = 1

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 29 / 44

Parametric Exceptional Translation (Sketch)

Most notably,

[Mz: A.B]. f = (z:[A]) (2 : [A]: z).[B]e (f)
[B]. b ~)= [true] + b= [false]
[L]e s = 1

Every pure term is now automatically parametric.

If I' b M : A then [[F]]E Fcorc [M]E : IIA]]E [IW]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

29 / 44

A Few Nice Results

Let's call 7 the resulting theory. It inherits a lot from CIC!

Theorem (Consistency)

Tg is consistent.

Theorem (Canonicity)
T enjoys canonicity, i.e if Fp M:N then M ~* 1 € N. l

Theorem (Syntax)

T2 has decidable type-checking, strong normalization and whatnot.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 30 / 44

What If There Were No Cake?

raise

~ P-M.Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 31/ 44

What If There Were No Cake?

77

raise

Bernardy-Lasson parametricity is a conservative extension of CIC...

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 31/ 44

What If There Were No Cake?

raise

7?7
Bernardy-Lasson parametricity is a conservative extension of CIC...

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 31/ 44

Tg is not a conservative extension of CIC.

T# is not a conservative extension of CIC.

Intuitively,

o raising uncaught exceptions is forbidden in 7

T# is not a conservative extension of CIC.

Intuitively,
o raising uncaught exceptions is forbidden in 7
o ... but you can still raise them locally

o ... as long as you prove they don't escape!

T.? is not a conservative extension of CIC.

Intuitively,
o raising uncaught exceptions is forbidden in 7
. but you can still raise them locally

o ... as long as you prove they don't escape!

T.? is not a conservative extension of CIC.

Intuitively,
o raising uncaught exceptions is forbidden in 7
. but you can still raise them locally

o ... as long as you prove they don't escape!

Explaining the Analogy

Kreisel realizability e
Source theory HA or HA® CIC
Programming language System T Te (“unsafe Coq")
Logical meta-theory HA® CIC

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 33 /44

Kreisel realizability T
Source theory HA or HA® CIC
Programming language System T Te (“unsafe Coq")
Logical meta-theory HA¥ CIC

Not much to say here.

In Kreisel realizability, ACy is a consequence of canonicity of System T.

Choice

ACy:(Vn:N.d3m:N.P (m,n)) - 3f: N—> N.Vn:N. P (n,fn)

Not much to say here.
In Kreisel realizability, ACy is a consequence of canonicity of System T.
In 7, ACy is a consequence of dependent elimination.

The latter is in turn meta-theoretically justified by canonicity.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 34 / 44

Choice

ACy:(Vn:N.d3m:N.P (m,n)) - 3f: N—> N.Vn:N. P (n,fn)

Not much to say here.
In Kreisel realizability, ACy is a consequence of canonicity of System T.
In 7, ACy is a consequence of dependent elimination.

The latter is in turn meta-theoretically justified by canonicity.

In both cases, choice is built-in and a consequence of canonicity.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 34 / 44

That one is interesting! A unforeseen consequence of a subtle bug.

Every type of realizers is inhabited. In particular, [L]xr = N.

Independence of Premises

IP:(m-A—3n:N.Pn)—»3In:N.-A— Pn

That one is interesting! A unforeseen consequence of a subtle bug.

Kreisel's bug

Every type of realizers is inhabited. In particular, [L]xr = N.
The realizer of IP critically relies on that!

Assuming System T had an empty type 0, and setting [L]xr = 0
o KR is still a model of HA
o KR still validates ACy
o KR doesn’t validate IP anymore

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

35 / 44

T validates IP, owing to the fact that in Tg, every type is inhabited. I

Volem Independéncia

IP:(-A—3n:N.Pn)—-3In:N.-A— Pn

Theorem (CIC + IP)
T validates IP, owing to the fact that in Tg, every type is inhabited.

Proof (sketch).
In Tg, build a term ip : IP

o Given f: =A — ¥n: N. P n, apply it to raise (—A4) e.
o If the returned integer is pure, return it with the associated proof.

o Otherwise, return a dummy integer and failing proof.
Easy to show that ip is actually valid in 7. O

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 36 / 44

Recall Markov's principle:

IIP:N—B.—-—(Xn:N.Pn=true) » Xn:N. P n=true (MP)

Recall Markov's principle:

IIP:N—B.—-—(Xn:N.Pn=true) » Xn:N. P n=true (MP)

Kreisel's Razor

Another Result for Free
Recall Markov's principle:

I[MP:N—B.——(Xn:N. P n=true) - Xn: N. P n=true (MP)

Kreisel's Razor
Pick two out of three: {canonicity, IP, MP}.

IP+MP=1IIP:N—B.Xn: N.IIm: N. P m = true —+ P n = true

Together with canonicity, this solves the halting problem.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 37 / 44

Another Result for Free
Recall Markov's principle:

I[MP:N—B.——(Xn:N. P n=true) - Xn: N. P n=true (MP)

Kreisel's Razor
Pick two out of three: {canonicity, IP, MP}.

IP+MP=1IIP:N—B.Xn: N.IIm: N. P m = true —+ P n = true

Together with canonicity, this solves the halting problem.

Corollary
|7Z7-Ep MP and thus Fcic MP.

(This was proved recently by Coquand-Mannaa, although in a completely different way.)
P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 37 / 44

Another interesting consequence that is similar to what happens in KR.

Fp Ili: 1i= tt and b (Ai:1.9) # (Ni:1.tt)

Function Intensionality

Another interesting consequence that is similar to what happens in KR.

o Tg satisfies definitional n-expansion: Az: A. M z= M.

o But it violates function extensionality!

P Ili: 1i = tt and 7 (Ai:1.0) # (Xi:1.tt)

The reason is that there are invalid proofs of 1.

You cannot build them, but they exists as phantom arguments.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018

38 / 44

o | don't know!
o But there are probably lessons to be taken from realizability

o I'm probably pissing off both HoTT and PRL zealots by now

Get You A Larger Coq, Today!

We implemented 7g and 73 in Coq in a plugin.

https://github.com/CoqHott/exceptional-tt

o Allows to add exceptions to Coq just today.
o Compile effectful terms on the fly.
o Allows to reason about them in Coq.

o Write mind-blowing low-level code!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 40 / 44

https://github.com/CoqHott/exceptional-tt

If You Were Sleeping During The Talk

Tg, a type theory that allows failure!

o Inconsistent as a logical theory
o A dependently-typed effectful programming language

o Can still be used for proof extraction like Friedman’s A-translation

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 41 / 44

If You Were Sleeping During The Talk

Tg, a type theory that allows failure!

©

Inconsistent as a logical theory

©

A dependently-typed effectful programming language

Can still be used for proof extraction like Friedman's A-translation

©

Ty, a type theory that allows local failure!

©

A safe layer atop 7r that enforces consistency
Strict superset of CIC: proves IP, —funext, disproves MP

(*]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 41 / 44

If You Were Sleeping During The Talk

Tg, a type theory that allows failure!

©

Inconsistent as a logical theory

©

A dependently-typed effectful programming language

Can still be used for proof extraction like Friedman's A-translation

©

Ty, a type theory that allows local failure!

©

A safe layer atop 7r that enforces consistency

(*]

Strict superset of CIC: proves IP, —funext, disproves MP

Both of them justified by purely syntactical means!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 41 / 44

If You Were Sleeping During The Talk

Tg, a type theory that allows failure!

©

Inconsistent as a logical theory

©

A dependently-typed effectful programming language

©

Can still be used for proof extraction like Friedman's A-translation

Ty, a type theory that allows local failure!

©

A safe layer atop T that enforces consistency

Strict superset of CIC: proves IP, —funext, disproves MP

(*]

Both of them justified by purely syntactical means!

“THE MORE IT FAILS, THE MORE LIKELY IT WILL EVENTUALLY SUCCEED.”

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 41 / 44

TODO When | Have a Permanent Position

o Tg looks like a good intermediate language for model building
o The Calculus of Shadok Constructions
o Potential applications to Gradual Typing?

o Syntactic models are super cool! Let's write more!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 42 / 44

Food For Thought

It seems you need to have a name starting with K to name a realizability.
Kleene

Kreisel
Krivine

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 44 / 44

